We present a method that accelerates reconstruction of 3D scenes and objects, aiming to enable instant reconstruction on edge devices such as mobile phones and AR/VR headsets. While recent works have accelerated scene reconstruction training to minute/second-level on high-end GPUs, there is still a large gap to the goal of instant training on edge devices which is yet highly desired in many emerging applications such as immersive AR/VR. To this end, this work aims to further accelerate training by leveraging geometry priors of the target scene. Our method proposes strategies to alleviate the noise of the imperfect geometry priors to accelerate the training speed on top of the highly optimized Instant-NGP. On the NeRF Synthetic dataset, our work uses half of the training iterations to reach an average test PSNR of >30.
translated by 谷歌翻译
在本文中,我们提出了一种新的方法来增强从单个可佩戴相机捕获的视频计算的人的3D身体姿势估计。关键的想法是利用在联合嵌入空间中链接第一和第三次视图的高级功能。为了了解这样的嵌入空间,我们介绍了First2第三姿势,这是一个近2,000个视频的新配对同步数据集,描绘了从第一和第三视角捕获的人类活动。我们明确地考虑了空间和运动域功能,同时使用以自我监督的方式培训的半暹罗架构。实验结果表明,使用我们的数据集学习的联合多视图嵌入式空间可用于从任意单视图的自拍视频中提取歧视特征,而无需需要域适应,也不知道相机参数。在三种监督最先进的方法中,我们在两个无约束数据集中实现了重大改善了两个无约束的数据集。我们的数据集和代码将可用于研究目的。
translated by 谷歌翻译
我们介绍了PhysxNet,一种基于学习的方法来预测可佩戴这些衣服的人类的3D骨架运动序列的可变形衣服的动态。该拟议的模型适用于各种各样的服装和改变拓扑,而无需被烫伤。这种模拟通常由需要手动人类专业知识的物理发动机进行,并且由计算密集的计算进行。相比之下,PhysXNet是一种完全可差的深网络,在推理时能够估计毫秒的致密布网格的几何形状,因此,可以容易地部署为更大的深度学习架构层。由于我们考虑的衣服的特定参数,基于编码空间服装位移的3D UV地图,因此实现了这种效率。然后将该问题制定为人类运动学空间(也由脱衣服的身体网的3D UV地图表示)进入衣服位移UV地图之间的映射,我们使用具有实施可行变形的鉴别器的鉴别器来学习。我们同时训练我们的三种服装模板,顶部,底部和连衣裙,我们模拟了50个不同人类行为的变形。尽管如此,我们认为的UV地图表示允许封装许多不同的布拓扑,并且在测试时,即使我们没有专门为他们训练,我们也可以模拟服装。彻底的评估表明,PhysxNet在非常接近使用物理发动机计算的布变形,打开门,以有效地集成在Deeplearning管道内。
translated by 谷歌翻译
Point of View & TimeFigure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances synthesised by the proposed model.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译
Optimal Power Flow (OPF) is a very traditional research area within the power systems field that seeks for the optimal operation point of electric power plants, and which needs to be solved every few minutes in real-world scenarios. However, due to the nonconvexities that arise in power generation systems, there is not yet a fast, robust solution technique for the full Alternating Current Optimal Power Flow (ACOPF). In the last decades, power grids have evolved into a typical dynamic, non-linear and large-scale control system, known as the power system, so searching for better and faster ACOPF solutions is becoming crucial. Appearance of Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on graph data, such as power networks. On the other hand, Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems. Although solutions that use these two methods separately are beginning to appear in the literature, none has yet combined the advantages of both. We propose a novel architecture based on the Proximal Policy Optimization algorithm with Graph Neural Networks to solve the Optimal Power Flow. The objective is to design an architecture that learns how to solve the optimization problem and that is at the same time able to generalize to unseen scenarios. We compare our solution with the DCOPF in terms of cost after having trained our DRL agent on IEEE 30 bus system and then computing the OPF on that base network with topology changes
translated by 谷歌翻译
In this paper, we present a modular methodology that combines state-of-the-art methods in (stochastic) machine learning with traditional methods in rule learning to provide efficient and scalable algorithms for the classification of vast data sets, while remaining explainable. Apart from evaluating our approach on the common large scale data sets MNIST, Fashion-MNIST and IMDB, we present novel results on explainable classifications of dental bills. The latter case study stems from an industrial collaboration with Allianz Private Krankenversicherungs-Aktiengesellschaft which is an insurance company offering diverse services in Germany.
translated by 谷歌翻译
Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as queuing theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and loss in networks. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and it is able to accurately scale to large networks. For example, the model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset with 1,000 samples, including network topologies one order of magnitude larger than those seen during training.
translated by 谷歌翻译
Our earlier research built a virtual shake robot in simulation to study the dynamics of precariously balanced rocks (PBR), which are negative indicators of earthquakes in nature. The simulation studies need validation through physical experiments. For this purpose, we developed Shakebot, a low-cost (under $2,000), open-source shake table to validate simulations of PBR dynamics and facilitate other ground motion experiments. The Shakebot is a custom one-dimensional prismatic robotic system with perception and motion software developed using the Robot Operating System (ROS). We adapted affordable and high-accuracy components from 3D printers, particularly a closed-loop stepper motor for actuation and a toothed belt for transmission. The stepper motor enables the bed to reach a maximum horizontal acceleration of 11.8 m/s^2 (1.2 g), and velocity of 0.5 m/s, when loaded with a 2 kg scale-model PBR. The perception system of the Shakebot consists of an accelerometer and a high frame-rate camera. By fusing camera-based displacements with acceleration measurements, the Shakebot is able to carry out accurate bed velocity estimation. The ROS-based perception and motion software simplifies the transition of code from our previous virtual shake robot to the physical Shakebot. The reuse of the control programs ensures that the implemented ground motions are consistent for both the simulation and physical experiments, which is critical to validate our simulation experiments.
translated by 谷歌翻译
Transformers have been essential to pretraining success in NLP. Other architectures have been used, but require attention layers to match benchmark accuracy. This work explores pretraining without attention. We test recently developed routing layers based on state-space models (SSM) and model architectures based on multiplicative gating. Used together these modeling choices have a large impact on pretraining accuracy. Empirically the proposed Bidirectional Gated SSM (BiGS) replicates BERT pretraining results without attention and can be extended to long-form pretraining of 4096 tokens without approximation.
translated by 谷歌翻译